Flytte Gjennomsnittet Prognose Feil


Flytende gjennomsnittlig eksponentielt bånd Den tekniske indikatoren for flytende gjennomsnittlig eksponentiell bånd er ganske enkelt mange eksponentielle glidende gjennomsnitt av økende tidsperiode tegnet på samme graf. Antall eksponentielle bevegelige gjennomsnitt (EMA) for å plotte varierer enormt blant brukerne av denne indikatoren også, noen brukere plotter det enkle glidende gjennomsnittet i stedet for EMA. På samme måte varierer lengden på de bevegelige gjennomsnittene også vilt. Man må faktor tidshorisonten og investere mål når man velger lengdene for de bevegelige gjennomsnittene. I diagrammet under E-mini SampP 500 Futures-kontrakten ble det valgt åtte EMAer, som begynner med 10-dagers EMA og slutter med 80-dagers EMA: Flytende gjennomsnittlig eksponentiell båndpotensiell kjøpssignal En forhandler kan tolke et kjøpsignal som heshe ville med andre bevegelige gjennomsnittlige crossover. jo raskere bevegelige gjennomsnittsoverganger over det langsommere bevegelige gjennomsnittet, men forskjellen er at det er mange kryssoverføringer. Det må treffes beslutninger om hvor mange kryssinger som må skje før et kjøpssignal utløses offisielt. En nærbilde av de potensielle kjøpesignaloverskridelsene er presentert nedenfor: Flytende gjennomsnittlig eksponentiell båndpotensiell selgesignal Tilsvarende er et mulig salgssignal gitt for eksponentielle flytende gjennomsnittlige bånd når de bevegelige gjennomsnittene begynner å krysse imidlertid å bestemme hvor mange kryssinger må forekomme før et selgesignal offisielt utløses, er det opp til aksje-, futures - eller valutaparhandel. Informasjonen ovenfor er kun til informasjons - og underholdningsformål, og utgjør ikke handelsrådgivning eller en oppfordring til å kjøpe eller selge noen aksje-, opsjons-, fremtidig, vare - eller forexprodukt. Tidligere resultater er ikke nødvendigvis en indikasjon på fremtidig ytelse. Handel er iboende risikabelt. OnlineTradingConcepts er ikke ansvarlig for eventuelle spesielle eller følgeskader som skyldes bruk av eller manglende evne til å bruke, materialene og informasjonen som tilbys av dette nettstedet. Se full ansvarsfraskrivelse. Eksponentiell flytende gjennomsnitt (EMA) Det eksponentielle flytende gjennomsnittet (EMA) veier nåværende priser høyere enn tidligere priser. Dette gir det eksponentielle flytende gjennomsnittet fordelen av å være raskere å svare på prisfluktuasjoner enn et enkelt flytende gjennomsnitt, men det kan også betraktes som en ulempe fordi EMA er mer utsatt for whipsaws (dvs. falske signaler). Tabellen under eBay (EBAY) lager viser forskjellen mellom en 10-dagers eksponentiell flytende gjennomsnitt (EMA) og 10-dagers vanlig Simple Moving Average (SMA): Det viktigste å merke seg er hvor mye raskere EMA reagerer på pris reverseringer mens SMA låter i perioder med reversering. Tabellen nedenfor i Nasdaq 100-børsen (QQQQ) viser forskjellen mellom å flytte gjennomsnittlige overganger (se: Moving Average Crossovers) mulige kjøps - og salgssignaler med en EMA og en SMA: Som diagrammet ovenfor over QQQQs illustrerer, selv om EMAer er raskere å svare på prisbevegelsen, EMAer er ikke nødvendigvis raskere for å gi mulighet til å kjøpe og selge signaler ved bruk av bevegelige gjennomsnittsoverskridelser. Vær også oppmerksom på at konseptet som er illustrert i diagrammet ovenfor med eksponentielle Moving Average crossovers, er konseptet bak den populære Flytende Gjennomsnittlig Konvergensdivergens (MACD) indikator (se: MACD). Siden eksponentielle flytende gjennomsnitt veier nåværende priser høyere enn tidligere priser, er EMA sett av mange forhandlere som overlegne til Simple Moving Average, men hver handelsmann skal veie pros og ulemper fra EMA og bestemme på hvilken måte de skal bruke flytte gjennomsnitt. Ikke desto mindre er Flytte Gjennomsnitt fortsatt den mest populære tekniske analyseindikatoren ute på markedet i dag. Informasjonen ovenfor er kun til informasjons - og underholdningsformål, og utgjør ikke handelsrådgivning eller en oppfordring til å kjøpe eller selge noen aksje-, opsjons-, fremtidig, vare - eller forexprodukt. Tidligere resultater er ikke nødvendigvis en indikasjon på fremtidig ytelse. Handel er iboende risikabelt. OnlineTradingConcepts er ikke ansvarlig for eventuelle spesielle eller følgeskader som skyldes bruk av eller manglende evne til å bruke, materialene og informasjonen som tilbys av dette nettstedet. Se fullstendig ansvarsfraskrivelse. Innføring i ARIMA: Nonseasonal modeller ARIMA (p, d, q) prognose ligning: ARIMA-modeller er i teorien den mest generelle klassen av modeller for prognoser for en tidsserie som kan gjøres til å være 8220stationary8221 ved differencing (hvis nødvendig), kanskje i forbindelse med ikke-lineære transformasjoner som logging eller deflatering (om nødvendig). En tilfeldig variabel som er en tidsserie er stasjonær hvis dens statistiske egenskaper er konstante over tid. En stasjonær serie har ingen trend, dens variasjoner rundt sin gjennomsnitt har en konstant amplitude, og den svinger på en konsistent måte. det vil si at kortsiktige tilfeldige tidsmønstre alltid ser like ut i statistisk forstand. Den sistnevnte tilstanden betyr at dets autokorrelasjoner (korrelasjoner med sine egne tidligere avvik fra gjennomsnittet) forblir konstante over tid, eller tilsvarende, at dets effektspektrum forblir konstant over tid. En tilfeldig variabel i dette skjemaet kan ses som en kombinasjon av signal og støy, og signalet (hvis det er tydelig) kan være et mønster av rask eller langsom, gjennomsnittlig reversering eller sinusformet svingning eller rask veksling i tegn , og det kan også ha en sesongbestemt komponent. En ARIMA-modell kan ses som en 8220filter8221 som forsøker å skille signalet fra støyen, og signalet blir deretter ekstrapolert inn i fremtiden for å oppnå prognoser. ARIMA-prognose-ligningen for en stasjonær tidsserie er en lineær (dvs. regresjonstype) ekvation hvor prediktorene består av lag av de avhengige variable ogor lagene av prognosefeilene. Det er: Forutsigbar verdi for Y en konstant og en vektet sum av en eller flere nylige verdier av Y og eller en vektet sum av en eller flere nylige verdier av feilene. Hvis prediktorene kun består av forsinkede verdier av Y. Det er en ren autoregressiv (8220self-regressed8221) modell, som bare er et spesielt tilfelle av en regresjonsmodell, og som kunne være utstyrt med standard regresjonsprogramvare. For eksempel er en førsteordens autoregressiv (8220AR (1) 8221) modell for Y en enkel regresjonsmodell der den uavhengige variabelen bare er Y forsinket med en periode (LAG (Y, 1) i Statgraphics eller YLAG1 i RegressIt). Hvis noen av prediktorene er lags av feilene, er en ARIMA-modell det IKKE en lineær regresjonsmodell, fordi det ikke er mulig å spesifisere 8220last period8217s error8221 som en uavhengig variabel: feilene må beregnes fra tid til annen når modellen er montert på dataene. Fra et teknisk synspunkt er problemet med å bruke forsinkede feil som prediktorer at modellen8217s spådommer ikke er lineære funksjoner av koeffisientene. selv om de er lineære funksjoner av tidligere data. Så koeffisienter i ARIMA-modeller som inkluderer forsinkede feil må estimeres ved ikke-lineære optimaliseringsmetoder (8220hill-klatring8221) i stedet for bare å løse et system av ligninger. Akronymet ARIMA står for Auto-Regressive Integrated Moving Average. Lags av den stasjonære serien i prognosekvotasjonen kalles kvotoregressivequot vilkår, lags av prognosefeilene kalles quotmoving averagequot vilkår, og en tidsserie som må differensieres for å bli stillestående, sies å være en quotintegratedquot-versjon av en stasjonær serie. Tilfeldige gange og tilfeldige trendmodeller, autoregressive modeller og eksponentielle utjevningsmodeller er alle spesielle tilfeller av ARIMA-modeller. En nonseasonal ARIMA-modell er klassifisert som en quotARIMA (p, d, q) kvotemodell hvor: p er antall autoregressive termer, d er antall ikke-sekundære forskjeller som trengs for stasjonar, og q er antall forsinkede prognosefeil i prediksjonsligningen. Forutsigelsesligningen er konstruert som følger. Først, la y angi den forskjellen på Y. Det betyr: Merk at den andre forskjellen på Y (d2-saken) ikke er forskjellen fra 2 perioder siden. Snarere er det den første forskjellen-av-første forskjellen. som er den diskrete analogen til et andre derivat, det vil si den lokale akselerasjonen av serien i stedet for sin lokale trend. Når det gjelder y. Den generelle prognosekvasjonen er: Her er de bevegelige gjennomsnittsparametrene (9528217s) definert slik at deres tegn er negative i ligningen, etter konvensjonen innført av Box og Jenkins. Noen forfattere og programvare (inkludert R programmeringsspråket) definerer dem slik at de har pluss tegn i stedet. Når faktiske tall er koblet til ligningen, er det ingen tvetydighet, men det er viktig å vite hvilken konvensjon programvaren bruker når du leser utgangen. Ofte er parametrene benevnt der av AR (1), AR (2), 8230 og MA (1), MA (2), 8230 etc. For å identifisere den aktuelle ARIMA modellen for Y. begynner du ved å bestemme differensordren (d) trenger å stasjonærisere serien og fjerne bruttoegenskapene til sesongmessighet, kanskje i forbindelse med en variansstabiliserende transformasjon som logging eller deflating. Hvis du stopper på dette punktet og forutser at den forskjellige serien er konstant, har du bare montert en tilfeldig tur eller tilfeldig trendmodell. Den stasjonære serien kan imidlertid fortsatt ha autokorrelerte feil, noe som tyder på at noen antall AR-termer (p 8805 1) og eller noen nummer MA-termer (q 8805 1) også er nødvendig i prognosekvasjonen. Prosessen med å bestemme verdiene p, d og q som er best for en gitt tidsserie, vil bli diskutert i senere avsnitt av notatene (hvis koblinger er øverst på denne siden), men en forhåndsvisning av noen av typene av nonseasonal ARIMA-modeller som ofte oppstår, er gitt nedenfor. ARIMA (1,0,0) førstegangs autoregressiv modell: Hvis serien er stasjonær og autokorrelert, kan den kanskje forutsies som et flertall av sin egen tidligere verdi, pluss en konstant. Forutsigelsesligningen i dette tilfellet er 8230 som er Y regressert i seg selv forsinket med en periode. Dette er en 8220ARIMA (1,0,0) constant8221 modell. Hvis gjennomsnittet av Y er null, vil ikke det konstante begrepet bli inkludert. Hvis hellingskoeffisienten 981 1 er positiv og mindre enn 1 i størrelsesorden (den må være mindre enn 1 i størrelsesorden dersom Y er stasjonær), beskriver modellen gjennomsnittsreferanseadferd hvor neste periode8217s verdi skal anslås å være 981 1 ganger som langt unna gjennomsnittet som denne perioden8217s verdi. Hvis 981 1 er negativ, forutser det middelreferanseadferd med skifting av tegn, dvs. det forutsier også at Y vil være under gjennomsnittlig neste periode hvis den er over gjennomsnittet denne perioden. I en andre-ordregivende autoregressiv modell (ARIMA (2,0,0)), ville det være et Y t-2 begrep til høyre også, og så videre. Avhengig av tegnene og størrelsene på koeffisientene, kunne en ARIMA (2,0,0) modell beskrive et system hvis gjennomsnitts reversering foregår i sinusformet oscillerende mote, som bevegelse av en masse på en fjær som er utsatt for tilfeldige støt . ARIMA (0,1,0) tilfeldig tur: Hvis serien Y ikke er stasjonær, er den enkleste modellen for den en tilfeldig turmodell, som kan betraktes som et begrensende tilfelle av en AR (1) modell der autoregressive koeffisienten er lik 1, det vil si en serie med uendelig sakte gjennomsnittlig reversering. Forutsigelsesligningen for denne modellen kan skrives som: hvor den konstante sikt er den gjennomsnittlige period-til-periode-endringen (dvs. den langsiktige driften) i Y. Denne modellen kan monteres som en ikke-avskjæringsregresjonsmodell der Første forskjell på Y er den avhengige variabelen. Siden den inneholder (bare) en ikke-sesongforskjell og en konstant periode, er den klassifisert som en quotARIMA (0,1,0) modell med constant. quot. Den tilfeldige tur-uten-drift modellen ville være en ARIMA (0,1, 0) modell uten konstant ARIMA (1,1,0) forskjellig førsteordens autoregressiv modell: Hvis feilene i en tilfeldig turmodell er autokorrelert, kan problemet løses ved å legge til et lag av den avhengige variabelen til prediksjonsligningen - - dvs ved å regresse den første forskjellen på Y i seg selv forsinket med en periode. Dette vil gi følgende prediksjonsligning: som kan omarrangeres til Dette er en førsteordens autoregressiv modell med en rekkefølge av ikke-soneforskjeller og en konstant term, dvs. en ARIMA (1,1,0) modell. ARIMA (0,1,1) uten konstant enkel eksponensiell utjevning: En annen strategi for korrigering av autokorrelerte feil i en tilfeldig gangmodell er foreslått av den enkle eksponensielle utjevningsmodellen. Husk at for noen ikke-stationære tidsserier (for eksempel de som viser støyende svingninger rundt et sakte varierende gjennomsnitt), utfører ikke den tilfeldige turmodellen så vel som et glidende gjennomsnittsverdier av tidligere verdier. Med andre ord, i stedet for å ta den nyeste observasjonen som prognosen for neste observasjon, er det bedre å bruke et gjennomsnitt av de siste observasjonene for å filtrere ut støy og mer nøyaktig anslå det lokale gjennomsnittet. Den enkle eksponensielle utjevningsmodellen bruker et eksponentielt vektet glidende gjennomsnitt av tidligere verdier for å oppnå denne effekten. Forutsigelsesligningen for den enkle eksponensielle utjevningsmodellen kan skrives i en rekke matematisk ekvivalente former. hvorav den ene er den såkalte 8220error correction8221 skjemaet, der den forrige prognosen er justert i retning av feilen den gjorde: Fordi e t-1 Y t-1 - 374 t-1 per definisjon kan dette omskrives som : som er en ARIMA (0,1,1) - out-konstant prognosekvasjon med 952 1 1 - 945. Dette betyr at du kan passe en enkel eksponensiell utjevning ved å angi den som en ARIMA (0,1,1) modell uten konstant, og den estimerte MA (1) - koeffisienten tilsvarer 1-minus-alfa i SES-formelen. Husk at i SES-modellen er gjennomsnittsalderen for dataene i 1-periode fremover prognosene 1 945. Det betyr at de vil ha en tendens til å ligge bak trender eller vendepunkter med ca 1 945 perioder. Det følger at gjennomsnittlig alder av dataene i 1-periode fremover prognosene for en ARIMA (0,1,1) uten konstant modell er 1 (1 - 952 1). For eksempel, hvis 952 1 0,8 er gjennomsnittsalderen 5. Når 952 1 nærmer seg 1, blir ARIMA (0,1,1) uten konstant modell et veldig langsiktig glidende gjennomsnitt og som 952 1 nærmer seg 0 blir det en tilfeldig tur uten drivmodell. What8217s den beste måten å korrigere for autokorrelasjon: legge til AR-vilkår eller legge til MA-vilkår I de to foregående modellene ble problemet med autokorrelerte feil i en tilfeldig turmodell løst på to forskjellige måter: ved å legge til en forsinket verdi av differensierte serier til ligningen eller legge til en forsinket verdi av prognosen feil. Hvilken tilnærming er best En tommelfingerregel for denne situasjonen, som vil bli nærmere omtalt senere, er at positiv autokorrelasjon vanligvis behandles best ved å legge til et AR-uttrykk for modellen og negativ autokorrelasjon vanligvis behandles best ved å legge til en MA term. I forretnings - og økonomiske tidsserier oppstår negativ autokorrelasjon ofte som en artefakt av differensiering. (Generelt reduserer differensiering positiv autokorrelasjon og kan til og med føre til en bryter fra positiv til negativ autokorrelasjon.) Så, ARIMA (0,1,1) modellen, der differensiering er ledsaget av en MA-term, brukes hyppigere enn en ARIMA (1,1,0) modell. ARIMA (0,1,1) med konstant enkel eksponensiell utjevning med vekst: Ved å implementere SES-modellen som en ARIMA-modell, får du faktisk en viss fleksibilitet. Først og fremst er estimert MA (1) - koeffisient tillatt å være negativ. Dette tilsvarer en utjevningsfaktor som er større enn 1 i en SES-modell, som vanligvis ikke er tillatt i SES-modellprosedyren. For det andre har du muligheten til å inkludere en konstant periode i ARIMA-modellen hvis du ønsker det, for å estimere en gjennomsnittlig ikke-null trend. ARIMA-modellen (0,1,1) med konstant har prediksjonsligningen: Forventningene for en periode fremover fra denne modellen er kvalitativt lik SES-modellen, bortsett fra at bane av de langsiktige prognosene vanligvis er en skrånende linje (hvis skråning er lik mu) i stedet for en horisontal linje. ARIMA (0,2,1) eller (0,2,2) uten konstant lineær eksponensiell utjevning: Linjære eksponentielle utjevningsmodeller er ARIMA-modeller som bruker to ikke-soneforskjeller i sammenheng med MA-termer. Den andre forskjellen i en serie Y er ikke bare forskjellen mellom Y og seg selv forsinket av to perioder, men det er den første forskjellen i den første forskjellen - dvs. Y-endringen i Y i periode t. Således er den andre forskjellen på Y ved periode t lik (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. En annen forskjell på en diskret funksjon er analog med et andre derivat av en kontinuerlig funksjon: det måler kvoteringsberegningsquot eller quotcurvaturequot i funksjonen på et gitt tidspunkt. ARIMA-modellen (0,2,2) uten konstant forutser at den andre forskjellen i serien er lik en lineær funksjon av de to siste prognosefeilene: som kan omarrangeres som: hvor 952 1 og 952 2 er MA (1) og MA (2) koeffisienter. Dette er en generell lineær eksponensiell utjevningsmodell. i hovedsak det samme som Holt8217s modell, og Brown8217s modell er et spesielt tilfelle. Den bruker eksponensielt vektede glidende gjennomsnitt for å anslå både et lokalt nivå og en lokal trend i serien. De langsiktige prognosene fra denne modellen konvergerer til en rett linje hvis skråning avhenger av den gjennomsnittlige trenden observert mot slutten av serien. ARIMA (1,1,2) uten konstant fuktet trend lineær eksponensiell utjevning. Denne modellen er illustrert i de tilhørende lysbildene på ARIMA-modellene. Den ekstrapolerer den lokale trenden i slutten av serien, men flater ut på lengre prognoshorisonter for å introdusere et konservatismedokument, en praksis som har empirisk støtte. Se artikkelen om hvorfor Damped Trend worksquot av Gardner og McKenzie og quotgolden Rulequot-artikkelen av Armstrong et al. for detaljer. Det er generelt tilrådelig å holde fast i modeller der minst en av p og q ikke er større enn 1, dvs. ikke prøv å passe på en modell som ARIMA (2,1,2), da dette sannsynligvis vil føre til overfitting og kvadrat-faktorquot problemer som er omtalt nærmere i notatene om den matematiske strukturen til ARIMA-modellene. Implementering av regneark: ARIMA-modeller som de som er beskrevet ovenfor, er enkle å implementere på et regneark. Forutsigelsesligningen er bare en lineær ligning som refererer til tidligere verdier av originale tidsserier og tidligere verdier av feilene. Dermed kan du sette opp et ARIMA prognose regneark ved å lagre dataene i kolonne A, prognoseformelen i kolonne B, og feilene (data minus prognoser) i kolonne C. Forutsigelsesformelen i en typisk celle i kolonne B ville ganske enkelt være et lineært uttrykk som refererer til verdier i forrige rader av kolonner A og C, multiplisert med de relevante AR - eller MA-koeffisientene lagret i celler andre steder på regnearket.

Comments

Popular posts from this blog

Forex Vekslingsrater Indisk Banker

Automatisert Trading System Cme

Aksjeopsjoner Opptjenings Klippen